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Treatment of Batch in the Detection, Calibration, and
Quantification of Immunoassays in Large-scale

Epidemiologic Studies
Brian W. Whitcomb,a,b Neil J. Perkins,b Paul S. Albert,c and Enrique F. Schistermanb

Background: Many laboratory assays measure biomarkers via a
2-stage process. Direct measurement yields relative measures that
are subsequently transformed to the unit of interest by using a
calibration experiment. The calibration experiment is performed
within the main experiment and uses a validation set for which true
values are known and relative values are measured by assays to
estimate the relation between relative and absolute values. Immu-
noassays, polymerase chain reaction, and chromatographic ap-
proaches are among assays performed in this manner.
Methods: For studies with multiple batches, data from more than a
single calibration experiment are available. Conventionally, calibra-
tion of assays based on the standard curve is performed specific to
each batch; the calibration experiment from each batch is used to
calibrate each batch independently. This batch-specific approach
incorporates batch variability but, due to the small number of
calibration measurements in each batch, may not be best suited for
this purpose.
Results: Mixed-effects models have been described to address
interassay variability and to provide a measure of quality assurance.
Conversely, when interbatch variability is negligible, a model that
does not incorporate batch effect may be used to estimate an overall
calibration curve.
Conclusion: We explore approaches for use of calibration data in
studies with many batches. Using a real data example with biomar-
ker and outcome information, we show that risk estimates may vary
depending on the calibration approach used. We demonstrate the
potential for bias when using simulations. Under minimal interbatch

variability, as seen in our data, conventional batch-specific calibra-
tion does not best use information available in the data and results in
attenuated risk estimates.

(Epidemiology 2010;21: S44–S50)

Many laboratory assays measure biomarkers via a
2-stage process; direct measurement of the biomarkers

yields a relative measure (eg, optical density �OD�) that
subsequently must be transformed to the unit of interest
through use of a calibration experiment. Regression calibra-
tion (RC) has been well described in other contexts.1,2 Sim-
ilarly for biomarker assays, the calibration experiment uses a
validation set for which the true values are known. These
known concentration values in combination with the assay
measurements may be used to estimate the link function
between the assay measurements and the desired unit. This
relationship is then used to convert assay measurements to
units of concentration. Such an approach affects quantifica-
tion of assay results as well as the effective detection limits.3,4

Many assays use calibration techniques for quantification.
These include chemiluminescence techniques such as en-
zyme-linked immunosorbent assay (ELISA) and similar
antibody–antigen capture systems, chromatographic ap-
proaches, and real-time polymerase chain reaction, among
others. In this paper, we focus our discussion on multiplex
immunologic assays for assessment of protein concentra-
tions in a sample.

A large and rapidly growing number of multiplexing
assays are available for detection and measurement of li-
gands. These assays allow simultaneous assessment of more
than 1 ligand and are performed in multiwell plates, with each
well containing 1 of the calibrator standards or study subject
samples to be analyzed. When there are more samples to be
analyzed than available wells, multiple batches must be used.
When this is the case and more than 1 batch is processed, data
from more than a single calibration experiment are available.
Conventionally, the calibration of relative assay results into a
unit of concentration based on the standard curve is per-
formed in a batch-specific fashion; the calibration experiment
and assay quantitation are performed for each batch indepen-
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dently. The results of each calibration experiment are used to
estimate the shape and range of 1 calibration curve for each
separate batch. When using some approaches, quantitation is
limited to only those values in the linear range of the cali-
bration curve, such that the assay quantification limits are
essentially established during this step.

The availability of larger calibration datasets in
large-scale studies raises the question of how best to use
these data. The batch-specific approach for estimating
calibration curves incorporates batch variability but may
not be best suited for this purpose. Batch-specific calibra-
tion— using calibrator data from each assay for calibrating
unknowns only from that assay—relies on limited calibra-
tion measurements in each batch, resulting in imprecise
estimation of the calibration curve and making it difficult
to differentiate measurement error from batch variability.
A mixed-effects model estimating fixed and random ef-
fects has been described for addressing interassay variabil-
ity that may arise for a variety of reasons—true assay
variation, experimental conditions including weather, lab-
oratory technician variability, among others—and, in mea-
suring deviations from fixed effects within each batch,
have the benefit of providing a measure of quality assur-
ance.5–9 Conversely, when there is negligible interbatch
variability, a model that does not incorporate batch effect
may be used to estimate an overall calibration curve.

In this paper, we explore various approaches for utili-
zation of calibration data in large-scale studies with many
batches and make comparisons with conventional laboratory
approaches. We use log base 10–transformed observed ODs
and known concentration values for the calibration experi-
ments for the cytokine granulocyte colony–stimulating factor
(GCSF) from a large study in which 24 batches were used.
We consider linear and curvilinear calibration models in a
batch-specific fixed-effects manner, mixed-effects models
that incorporate batch effects as random effects, and linear
models that collapse across batches (ie, do not account for a
batch effect). Each of these approaches is evaluated in cali-
bration models with the known concentration as the depen-
dent variable as in RC10 and alternatively, with observed ODs
as the dependent variable—inverse regression calibration
(IRC). We apply these approaches to a dataset of cytokine
levels measured in 943 women in a case-control study of
miscarriage and (1) compare each approach, (2) evaluate
factors that result in disagreement between the approaches,
and (3) compare estimates from logistic regression models of
miscarriage by using each of the proposed calibration ap-
proaches. Additionally, results of a simulation study are
presented. Using a 4-parameter logistic model to generate
data, as has been described in the literature,11,12 we evaluate
the effect of choice of calibration approach on risk estimates
under a range of conditions.

METHODS

Study Population
Participants were selected from the Collaborative Peri-

natal Project (CPP) cohort. The CPP was a multisite prospec-
tive study of early childhood outcomes, conducted from 1959
to 1974, which enrolled participants at presentation for pre-
natal care and is described in detail elsewhere.13 Serum
samples were collected at entry to the CPP and at subsequent
bimonthly visits and stored at �20°C. Gestation was esti-
mated using self-reported date of last menstrual period. Mis-
carriage was defined as involuntary loss of a clinically rec-
ognized intrauterine pregnancy at less than 140 days of
gestation. Participants with serum samples collected fewer
than 10 days before miscarriage (n � 355) or for whom
serum samples were unavailable (n � 36) were excluded.
After exclusions, 462 serum samples from cases of miscar-
riage and 481 serum samples from nonmiscarriage controls
were selected for this study. These samples were used for
assessment of GCSF, among other cytokines, to evaluate the
relation between levels of inflammatory markers in early
pregnancy and adverse pregnancy outcomes, including mis-
carriage and preterm delivery.

GCSF Assessment
Serum GCSF levels, along with other assayed cyto-

kines, were measured using the multiplex Fluorokine MAP
Human Cytokine detection system (R&D Systems, Inc, Min-
neapolis, MN) as previously described.14 Briefly, the assays
use 96-well plates with 50 �g of sera in duplicates in a
sandwich ELISA-based approach. The solid phase consists of
fluorescent beads covalently linked with cytokine-specific
monoclonal antibodies, allowing capture of each cytokine
and corresponding biotinylated antibody. After addition of
streptavidin-phycoerythrin, intensity is measured using the
Luminex 100 IS system (Luminex Corp, Austin, TX). Utility
of these assays for evaluation of serum cytokine levels in
samples from the CPP repository has been previously been
described.14,15 Cytokine measurement was observed with
high test–retest reliability, and cytokine levels measured in
frozen CPP samples selected from the repository for these
investigations were similar to those observed in freshly col-
lected serum samples. Running 40 samples in duplicate per
batch, a total of 24 separate assays were performed and
analyzed. Each plate included 8 standards run in duplicate to
generate calibration curves, including a diluent-only blank
and 7 serial dilutions. Samples were randomly ordered by
case status and batches were organized by gestational age at
sample collection. Case samples and matched controls were
analyzed in the same batch. Because specimens had been
collected previously and identifying information had been
removed, the Office of Human Subjects Research at the
National Institutes of Health and the institutional review
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board at the University of Florida determined this study was
exempt from full institutional review board review.

Statistical Analysis
Information from the calibration series on the evaluated

cytokines was used to assemble the calibration data, which in
turn was used to generate the calibration curves that model
the relation between the calculated concentration of each
cytokine in picogram-per-milliliter units and the relative
fluorescence units (RFUs) produced by the assays, as quan-
tified by the Luminex system. A total of 6 approaches for
creating calibration models were evaluated.

Simple linear regression models were run that disre-
garded the batch information, as:

yij
cal � �0 � xij

cal�1 � �ij (1)

where batch is i � 1 to 24, yij
cal is a log10-known concentration

for the jth standard (j � 1 to 7) that are fixed across batches
and with corresponding measured optical density xij

cal, the
log10-observed light intensities in RFUs for each of the
standards. A batch-specific fixed-effects model was fit includ-
ing a batch–biomarker interaction and can be represented as:

yij
cal � ��0 � �i� � xij

cal��1 � �i� � �ij (2)

where the �i are the batch-specific deviations from the overall
intercept �0 and the �i are the batch-specific deviations from
the overall slope �1.

Similarly 2 random effect models were evaluated. One
incorporated a random intercept term b0i along with a fixed
slope term. The other model included a random intercept b0i
and slope b1ii; in this model, the random effects characterize
the deviations of the batches from the overall fixed effects,
and have mean zero and variance B as:

yij
cal � ��0 � b0i� � xij

cal��1 � b1i� � �ij. (3)

Each of these approaches was also explored assuming a
higher-order polynomial rather than a simple regression re-
lationship. Quadratic models were fit with square terms to
allow for a curvilinear relation between known picograms per
milliliter and measured RFUs. All mixed models included the
same number of fixed and random terms; linear mixed models
included fixed terms for intercept and slope; quadratic mixed
models also considered fixed and random square terms.

Models 1, 2, and 3 were run as shown, with the known
concentrations of the calibration standards, yij

cal, as the inde-
pendent (RC) variable. Similar models for each were also run
with xij

cal and yij
cal switched (IRC). For either approach, the

calibration models were used to relate known concentration
to observed assay measurements. Subsequently, calibration
model estimates were used to calibrate the unknowns, that is,
estimate concentration of a sample from its measured OD.
For the curvilinear models with a square term (quadratic

models) with the IRC approach, we used the larger/positive
root from the quadratic formula in calibration.

After generating each calibration model, parameter
estimates were used to calibrate data for participant sam-
ples according to the previously described approaches.
Agreement between methods was evaluated graphically,
and overall goodness of fit was evaluated using �2 log
likelihood and the Akaike information criterion. A case-
control study analysis was performed to illustrate the
effect of the choice of calibration approach on risk esti-
mation. Concentration data generated by each method
were used to model risk of miscarriage by logistic regres-
sion. Odds ratios (OR) and 95% confidence intervals (CIs)
were estimated for each approach and compared.

Analysis Results
A scatter plot of the data from the calibration exper-

iment for all 24 batches is shown in eFigure 1
(http://links.lww.com/EDE/A385). Log base 10 transforma-
tion of both signal and response results in an approximately
linear relation between the variables. Several clearly visible
outliers resulted from a few of the experiments. Specifically,
1 replicate of the fourth standard (true concentration � 222.2
pg/mL) in batches 21 and 24, and 1 replicate of the most
concentrated standard (true concentration � 6000 pg/mL)
were discrepant from the majority of points within those
batches; however, concentrations were assigned to those
points, which factored into the mean across replicates. Anal-
ysis was also performed after removal of the 3 outlying
points, and the influence of the outliers on analysis is further
discussed later.

eTable 1 (http://links.lww.com/EDE/A385) displays
the parameter estimates averaged across batches for linear
and quadratic calibration models, strictly for purposes of
illustration. In linear RC models, the mean of the estimates
from the batch-specific (intercept � �1.05; slope � 1.24)
and mixed-effects models (intercept � �1.04; slope � 1.23)
were similar to each other and similar to the estimates from
the collapsed model (intercept � �0.98; slope � 1.21). On
the other hand, quadratic model parameters were observed to
differ between the collapsed (intercept � 0.79; slope � 1.06;
square term � 0.13) and batch-specific models (intercept �
�1.02; slope � 0.17; square term � 0.002). The curvilinear
mixed model was inestimable due to a singular variance
matrix for the random effects. In part, this may have occurred
due to the minimal curvature in the calibration curves, which
would result in a near-zero variance estimate for the quadratic
random effect term.

Among linear IRC models, mean parameter estimates
from the batch-specific fixed-effects models and mixed mod-
els were approximately equal to those of the collapsed, with
an intercept of 0.87 and a slope of 0.80. Differences in
parameter estimates were observed for curvilinear models,
although the differences were minimal. The mixed-effects
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IRC model was estimable up to the square term as random
effects. Examining different RC and IRC models separately,
mixed models had the lowest values of the Akaike informa-
tion criterion, followed by collapsed and then the batch-
specific interaction model.

The agreement between a subset of the different ap-
proaches taken to calibration is illustrated in the panels of
eFigures 2 and 3 (http://links.lww.com/EDE/A385). The top
left panel shows collapsed RC models against batch-specific
RC models. The data fall along several distinct roughly 45°
lines, reflecting method agreement within batch but system-
atic differences between batches. Conversely, the top right
panel comparing the collapsed model against mixed models
illustrates a single line off the 45° line and with a nonzero
intercept, which illustrates a strong correlation between the
methods, but systematically higher levels determined by the
collapsed approach. In the left lower panel comparing IRC
collapsed to batch-specific models, a greater degree of agree-
ment is apparent in comparison with the RC models; how-
ever, certain batches display discrepant classification related
to the effect of the estimated square term. The bottom right
panel displays similar overall agreement between the col-
lapsed and mixed-model calibrated data, but those batches
with outliers in the calibration series illustrate systematic
differences. Inverse regression calibration adds leverage to
the outlying calibrator replicates in the middle of the RC
regression. As eFigure 3 (http://links.lww.com/EDE/A385)
illustrates, removal of these few outlying points substantially
affects the agreement between methods for data calibration.

Results of logistic regression models of spontaneous abor-
tion are shown in eTable 2 (http://links.lww.com/EDE/A385).
Estimates for the effect of log base 10 GCSF concentrations,
as determined by each of the previously described ap-
proaches, are shown with 95% CIs on the OR. Point estimates
were observed to vary widely by the calibration approach,
although CIs largely overlapped. Estimates and their 95% CIs
varied in regard to inference; among models in which GCSF
levels were determined from RC models, those from col-
lapsed calibration were statistically significant, whereas CIs
for all others crossed the null. Among models in which GCSF
levels were determined from IRC models, estimates and 95%
CIs were similar for the collapsed and mixed models, with
ORs ranging from 0.37 to 0.50 and 95% CI endpoints as low
as 0.15 and as high as 0.95. Odds ratio estimates from
batch-specific calibrated data were closer to the null and had
CIs crossing the null. Importantly, we note that all CIs are
conditional on the values of the assay and do not account for
measurement error.

Simulation Study
A simulation study was conducted to assess further the

effects various methods/models have on risk estimation–
based data from multiple batches of biomarker measure-
ments. Data were generated for the simulated study partici-

pants in a case-control study (lognormally distributed) with
differing levels of true risk as well as for the calibration series
data. For the latter, 7 replicate measures of calibration points
were generated for every simulated batch. Variability param-
eters in the calibration function, as well as the functional
shape parameters, were based on the observed variability in
the case-control data.

Simulated calibration data were created using a 4-pa-
rameter model to describe the true overall relation between
the relative ODs and the concentration in picogram-per-
milliliter units. The 4-parameter logistic describes a sigmoi-
dal function that has been shown to fit similar functional data
well.11,12 The 4-parameter logistic models concentration as a
function of OD, making it an inverse regression approach.
Random batch variability was added to simulate varying
conditions over batches; at each known, fixed calibration
concentration, random measurement error was added to the
corresponding true OD for that batch resulting in the 14
points, 2 per concentration, used for the batch calibration
curve. Additionally, laboratory failures affecting measure-
ment of the calibrator series were simulated. Simulated true
concentration data, ODs, and case-control status were simu-
lated as described in the Appendix.

The simulated calibration data were utilized to estimate
calibration curves by using each of the previously described
methods after applying a simple log–log transformation. Case
and control ODs were converted to the log scale and to log
concentration “measurements” based on each method. The
OR was then estimated from these simulated log concentra-
tions by using logistic regression models with the form:

logit(P) � �0 � �1Y

where Y is “measured” concentration and OR � exp{�1}.

Results of Simulation Study
eFigure 4 (http://links.lww.com/EDE/A385) displays

empirical bias as a percentage of the true OR for sample size
n � 800 and true OR � 1.65. Standard error for estimates
was similar across approaches (range from 0.22 for linear RC
collapsed to 0.28 for linear IRC batch-specific models). Root
mean square error was primarily determined by bias and is
not displayed. With RC models, not accounting for the batch
effect (collapsed) resulted in less negative bias (attenuation)
than either the batch-specific fixed-effects or the mixed-
effects model. Bias was similar between the linear and cur-
vilinear models. Parameter estimates from the mixed-effects
calibration model were similar to the batch-specific model.
The largest bias was seen in the batch-specific calibrated data,
as great in magnitude as 14% for the linear model with true
OR of 1.65.

A similar pattern was observed for IRC models, al-
though bias was generally larger for these approaches than for
RC models. Collapsed models again had the lowest bias of
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those evaluated, whereas the mixed models and batch-specific
models resulted in similarly biased estimates of the OR. There
was less variability in estimates between approaches among the
IRC models. Both linear and curvilinear batch-specific calibra-
tion models resulted in underestimates of effect. To illustrate the
impact of the use of the log-log-linear calibration models,
percentage of bias is also shown for the 4-parameter logistic
models in eFigure 4 (http://links.lww.com/EDE/A385). The col-
lapsed IRC and collapsed IRC and batch-specific IRC models
had similar biases to the log-log linear models. For all evaluated
scenarios, percentage of bias increased with increasing true risk
and was not decreased with increasing sample size.

eTable 3 (http://links.lww.com/EDE/A385) shows the
bias in OR estimates when biomarker quantification is based
on a 7-point calibration experiment compared with that of a
14-point calibration experiment using the 4-parameter logis-
tic model to fit the calibration data. Collapsing across batches
and batch-specific models were considered. Bias was uni-
formly reduced under the expanded 14-point calibration ex-
periment; however, the reduction in bias was small. The
factor with the greatest impact on bias was the true OR,
showing that measurement error in the calibration experiment
was not eliminated under any of the approaches evaluated.

DISCUSSION
A wide range of immunoassays are used in the quan-

tification of biomarkers in epidemiologic investigations; these
assays rely on calibration experiments to convert the relative
measures corresponding to light intensities produced in the
assay into data in units of concentration. This calibration
experiment is conventionally run repeatedly for each individ-
ual assay performed, even in large-scale studies that may
entail a large number of assays to account for interbatch
variability. The calibration data within an individual batch are
frequently used independently of those of other batches. In
this study we evaluated alternatives to this approach to
determine best use for calibration data. We compared con-
ventional batch-specific calibration with 2 alternatives: (1)
considering all calibration data as a single calibration exper-
iment and, (2) using mixed models to estimate fixed effects
corresponding to the overall with random, batch-specific
estimates of the deviation of each batch from the overall.
Using these approaches for calibration of GCSF from a
case-control study of spontaneous abortion, we observed not
only differences between the methods in the calibrated data,
but also found substantial differences in the estimates derived
from logistic regression models based on these different
approaches. Our findings suggest that the calibration ap-
proach has the potential to change the conclusions of inves-
tigators of epidemiologic investigations.

The problem of calibration is not a new one. Ap-
proaches for calibrating data by using a validation set have
been well described in the literature.1,2,10,16 In the context of

laboratory assays, calibration has also received a substantial
amount of attention.5–8,17–19 Considering the conditions for
performing immunoassays in large-scale studies, various in-
vestigators have advocated use of mixed models.5,6 Such an
approach has been suggested to address sources of random
error including technician variability, variability by lot num-
ber, and conditions that may affect receptor–ligand binding
such as temperature and light exposure.8 Moreover, by com-
bining data from multiple assay runs, one may use the
deviations estimates, in combination with other information,
to perform quality assurance.5,6 In comparison with fixed-
effects batch-specific models that make no assumptions re-
garding the relation between batches, use of mixed models
implies the existence of an overall relation with batch-specific
deviations as the random effects; the assumption of an overall
relation is explicit in models collapsed across batches. The
assumption of batch exchangeability is important for deter-
mining whether estimates of an overall relation are valid, and
approaches for testing this source of variability have been
proposed.8 This assumption of independence between batch
and concentration is important; investigators should take care
when allocating specimens to batches to achieve a random
distribution of factors that may affect concentration (eg, case
status or time of sampling).

We evaluated models utilizing a RC-based ap-
proach1,2,10 and IRC models to reflect calibration curve fitting
as is conventionally done in laboratory science, and that
previously used in the literature.5–9,18 We noted several
interesting observations in comparing these approaches. Re-
gression calibration—modeling the concentration as a func-
tion of OD in both the calibration and unknown measurement
phases of the experiment—models the relationship of interest
for calibrating the data but is inconsistent with many of the
model assumptions and resulted in issues with the response
distribution for calibration. With only 7 (or 8, if the blank is
included) fixed values in replicates for all batches, there are
major limitations in estimating more complex models; both
collapsed and batch-specific models were estimable with
quadratic (and cubic) regression but only linear mixed models
converged.

Inverse regression calibration—modeling OD as a
function of concentration and calibrating the data to concen-
tration—corrects the violation of assumptions in the fixed-
dependent variable RC models and solved the problem of
nonconvergence. Certain outlying points on the regression
line with minimal leverage in the RC models increased
leverage in the IRC model and affected the estimated param-
eters. These effects were evident in plots from collapsed
compared with mixed-effects RC models and collapsed com-
pared with mixed-effects IRC models; in the latter, a batch
effect is apparent for several batches with outlying points
from a discrepant single replicate in the middle of the curve.
Similarly, plots of collapsed compared with batch-specific
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approaches illustrate that the latter approach appears to actu-
ally add batch variability in some circumstances. Predomi-
nantly, these occur with flaws in the calibration experiment
and might be remedied by rejecting the assay for tolerance
violations, and rerunning. In multiplexing, multiple analytes
are simultaneously measured, and failure of measurement of
a single one may not justify the expense of repeating the
experiment.

The results of simulations further illustrate the perfor-
mance of each of the approaches when studies with large
numbers of biospecimens—and accordingly larger calibration
datasets—are conducted. We generated data with a true
underlying calibration function, batch variability, and sources
of error chosen to reflect the real data we observed. Under
these conditions, batch-specific fixed-effects calibration per-
formed decidedly worse than other evaluated approaches.
Additionally, models based on modeling OD as the response
variable—IRC models—resulted in increased bias to risk
estimates in comparison with RC models. By estimating
calibration model parameters in the same orientation as the
calibration model is to be used for calibrating the unknowns,
random error in the calibrated data was reduced. The IRC
approach appears highly sensitive to outlying points and
overmodels batch variability. In the real data example, re-
moval of a small number of outlying points had substantial
consequences to risk estimates, illustrating the sensitivity of
results to mismeasurement in the calibration series. Investi-
gators are cautioned to take heed of the importance of a good
calibration experiment.

Despite the presence of interbatch variability, models
that collapse over batches (ie, do not incorporate batch effect)
resulted in less bias in the risk estimates than did batch-
specific calibration. Although counterintuitive on the surface,
the benefit of collapsing comes from its exploiting the avail-
ability of a large dataset to model the underlying relation
between optical density and concentration, and preventing
true batch variability being swamped by uncertainty from
attempting to model a relation per batch based on only 7
replicated points in each batch. Use of the collapsed model is
premised on a relatively small batch-to-batch variation across
batch-specific calibration curves.

In our simulations, the estimates of association (log OR
estimates) were attenuated for all calibration methods; we
evaluated the source of this systematic underestimation
through additional simulations. We initially considered
model misspecification. The 4-parameter model was chosen
to maintain the complexity displayed in the real data, whereas
the linear RC models were used for purposes of illustration,
relative simplicity, and thus increased likelihood of being
practically employed using standard statistical software. Re-
gardless, in comparing use of log-log models and 4-parameter
models, we did not observe significant differences for any of
the models evaluated. Rather than misspecification of the

model, the source of the underestimation appears to be related
to the number of data points available for the calibration
experiment. We compared risk estimates based on data cali-
brated from a standard 7-point curve with those of a curve
with additional dilutions and found bias reduced in the latter.
The reduction in attenuation with more points on the calibra-
tion curve may be because we do not explicitly account for
the measurement error associated with the concentration
levels. Future research could focus on incorporating this
measurement error into the logistic regression modeling. For
this paper, we have focused on the impact of the calibration
approach on risk estimation and illustration of the potential
variability thereof. We have not described other issues that
may affect calibration, such as heteroscedasticity in the cal-
ibration regressions9,20,21 and serial dilution error.19 In addi-
tion to the issue of minimal variance in the known concen-
trations of the calibrator data, the problem of serial dilution
error may arise when a laboratory error in dilution is propa-
gated in subsequent dilutions, resulting in a nonindependence
among the calibrator series. Although the use of micropi-
pettes for volumetric dispensing is very precise, errors in
preparation of the calibrator series can adversely affect cali-
bration inference.19

A comparison of multiple approaches to calibrating
data from immunoassays illustrates that the resulting differ-
ences may lead to important differences in conclusions of
models of risk. We used a batch-specific approach that is used
conventionally for laboratory sciences, along with alterna-
tives including a mixed-effects model for generating concen-
tration information for GCSF measured in multiplex assays to
use in logistic regression models of spontaneous abortion; OR
estimates for batch-specific approach ranged from 0.63 to
0.86 with all 95% CIs crossing 1.0, whereas statistically
significant protective OR estimates were observed for alter-
natives. Simulation study results further illustrate the differ-
ences between calibration approaches. These observations
support previous investigators who have advocated for more
comprehensive use of the data from multiple calibration
experiments performed within studies that entail multiple
assays.6,7 Investigators of epidemiologic studies that include
similarly measured biomarkers should consider use of these
data to greater advantage than convention. Failure to do so
may contribute to failures to detect small effects in epidemi-
ologic studies of complex disease.

APPENDIX
Simulations were conducted to assess various tech-

niques for the utilization of calibration data to achieve the
best estimation. For each method a calibration curve was
generated. Then, using each curve, simulated ODs were
converted into biomarker levels. We next estimated ORs (for
a 1-unit change in transformed data) by using the biomarker
levels from each method and calculated bias, standard error,
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and root mean square error over B � 2000 iterations to
compare the estimators. Various parameter scenarios were
investigated, OR � 1.05, 1.15, and 1.65, using several sample
sizes of biomarker levels n � 400, 800, and 2000, where each
batch consists of 40 measurements resulting in m � 10, 20,
and 50 batches, respectively.

Two phases of random data were implemented. First, n
lognormally distributed “true” biomarker values, yt, were
randomly generated. Next, case and control status were sim-
ulated based on a logistic regression model where

logit(P) � �0 � �1Y

where Y is the biomarker concentration generated in the first
stage and OR � exp{�1}.

The second phase started with a “true” overall 4-pa-
rameter logistic model.

f �x, �� � � �2 �
��1 	 �2�

�1 � �x/�3�
�4�

that models OD as a function of concentration. The parame-
ters �� (0.000, 1.025, 8.841, and 9.698) were based on cyto-
kine values in the CPP dataset and used as the true underlying
calibration curve. From here, batch variability was introduced
to create m sets of “true” batch-specific curves by randomly
sampling �� i, i � 1, . . ., m, from a multivariate normal dis-
tribution centered at the true �� , parameters are drawn to
establish “true” batch-specific calibration curves. From these
“true” batch-specific curves, “true” ODs, x�*t, were generated
batch wise for the “true” biomarker measurements, yt, from
step 1.

Next, 7 fixed calibrating concentrations x � (6000,
2000, 666.67, 222.22, 74.07, 24.69, and 8.23) and the
“true” batch-specific calibration curve were used to get
corresponding ODs, xij

*cal � f� yij
cal, �� i

*, j � 1, . . ., 7. Ran-
dom error was then added to these ODs such that replicate
variability (measurement error) is introduced on the log
scale to each of the 2 calibration measurements per fixed
concentration, yijk � exp{log� yij� � �ijk}, where k � 1, 2
and �ijk � N�0, 
� � 0.25). The level of replicate error used
was based on the cytokine measures in the CPP dataset and
introduced through a power function as suggested by Zeng
and Davidian.7 Using these replicate measures, xijk

**cal, at fixed
concentration, yij

cal, each of the calibration modeling tech-
niques described in the paper is applied and those estimated
calibration curves are used to convert the biomarker ODs, xt,

into “measured” biomarker concentration levels, ym. Disease
status along with the ym biomarker “measurements” are then
used to estimate ORs based on each technique. These esti-
mators are the unit of comparison for the various techniques.
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